Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557486

RESUMO

The integrated stress response (ISR) is a highly conserved biochemical pathway involved in maintaining proteostasis and cell health in the face of diverse stressors. In this Review, we discuss a relatively noncanonical role for the ISR in neuromodulatory neurons and its implications for synaptic plasticity, learning, and memory. Beyond its roles in stress response, the ISR has been extensively studied in the brain, where it potently influences learning and memory, and in the process of synaptic plasticity, which is a substrate for adaptive behavior. Recent findings demonstrate that some neuromodulatory neuron types engage the ISR in an "always-on" mode, rather than the more canonical "on-demand" response to transient perturbations. Atypical demand for the ISR in neuromodulatory neurons introduces an additional mechanism to consider when investigating ISR effects on synaptic plasticity, learning, and memory. This basic science discovery emerged from a consideration of how the ISR might be contributing to human disease. To highlight how, in scientific discovery, the route from starting point to outcomes can often be circuitous and full of surprise, we begin by describing our group's initial introduction to the ISR, which arose from a desire to understand causes for a rare movement disorder, dystonia. Ultimately, the unexpected connection led to a deeper understanding of its fundamental role in the biology of neuromodulatory neurons, learning, and memory.


Assuntos
Distonia , Distúrbios Distônicos , Humanos , Transdução de Sinais , Encéfalo , Neurotransmissores
2.
Data Brief ; 39: 107609, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901342

RESUMO

Here, we present quantitative subcellular compartment-specific proteomic data from wildtype and DYT-TOR1A heterozygous mouse embryonic fibroblasts (MEFs) basally and following thapsigargin (Tg) treatment [1]. In this experiment, we generated MEFs from wild type (WT) and a heterozygous DYT-TOR1A mouse model of dystonia. Subsequently, these MEF cultures were treated with either 1 µM Tg or dimethylsulfoxide vehicle (Veh) for six hours. Following treatment, the cells were fractionated into nuclear and cytosolic fractions. Liquid chromatography, tandem mass spectrometry (LC/MS/MS)-based proteomic profiling identified 65,056 unique peptides and 4801 unique proteins across all samples. The data presented here provide subcellular compartment-specific proteomic information within a dystonia model system both basally and under cellular stress. These data can inform future experiments focused on studying the function of TorsinA, the protein encoded by TOR1A, and its potential role in nucleocytoplasmic transport and proteostasis. In addition, the information in this article can also inform future mechanistic studies investigating the relationship between DYT-TOR1A dystonia and the cellular stress response to advance understanding of the pathogenesis of dystonia.

3.
Neurobiol Dis ; 158: 105464, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358617

RESUMO

TorsinA is a AAA+ ATPase that shuttles between the ER lumen and outer nuclear envelope in an ATP-dependent manner and is functionally implicated in nucleocytoplasmic transport. We hypothesized that the DYT-TOR1A dystonia disease-causing variant, ΔE TorsinA, may therefore disrupt the normal subcellular distribution of proteins between the nuclear and cytosolic compartments. To test this hypothesis, we performed proteomic analysis on nuclear and cytosolic subcellular fractions from DYT-TOR1A and wildtype mouse embryonic fibroblasts (MEFs). We further examined the compartmental proteomes following exposure to thapsigargin (Tg), an endoplasmic reticulum (ER) stressor, because DYT-TOR1A dystonia models have previously shown abnormalities in cellular stress responses. Across both subcellular compartments, proteomes of DYT-TOR1A cells showed basal state disruptions consistent with an activated stress response, and in response to thapsigargin, a blunted stress response. However, the DYT-TOR1A nuclear proteome under Tg cell stress showed the most pronounced and disproportionate degree of protein disruptions - 3-fold greater than all other conditions. The affected proteins extended beyond those typically associated with stress responses, including enrichments for processes critical for neuronal synaptic function. These findings highlight the advantage of subcellular proteomics to reveal events that localize to discrete subcellular compartments and refine thinking about the mechanisms and significance of cell stress in DYT-TOR1A pathogenesis.


Assuntos
Núcleo Celular/patologia , Distonia/genética , Distonia/patologia , Chaperonas Moleculares/genética , Proteômica , Estresse Fisiológico , Animais , Citosol/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Técnicas de Introdução de Genes , Camundongos , Camundongos Endogâmicos C57BL , Frações Subcelulares , Tapsigargina/farmacologia
4.
Sci Transl Med ; 13(607)2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408078

RESUMO

Dystonias are a group of chronic movement-disabling disorders for which highly effective oral medications or disease-modifying therapies are lacking. The most effective treatments require invasive procedures such as deep brain stimulation. In this study, we used a high-throughput assay based on a monogenic form of dystonia, DYT1 (DYT-TOR1A), to screen a library of compounds approved for use in humans, the NCATS Pharmaceutical Collection (NPC; 2816 compounds), and identify drugs able to correct mislocalization of the disease-causing protein variant, ∆E302/3 hTorsinA. The HIV protease inhibitor, ritonavir, was among 18 compounds found to normalize hTorsinA mislocalization. Using a DYT1 knock-in mouse model to test efficacy on brain pathologies, we found that ritonavir restored multiple brain abnormalities across development. Ritonavir acutely corrected striatal cholinergic interneuron physiology in the mature brain and yielded sustained correction of diffusion tensor magnetic resonance imaging signals when delivered during a discrete early developmental window. Mechanistically, we found that, across the family of HIV protease inhibitors, efficacy correlated with integrated stress response activation. These preclinical results identify ritonavir as a drug candidate for dystonia with disease-modifying potential.


Assuntos
Distonia , Inibidores da Protease de HIV , Animais , Encéfalo/diagnóstico por imagem , Distonia/tratamento farmacológico , Camundongos , Chaperonas Moleculares , Fenótipo , Ritonavir
5.
Science ; 372(6540)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888613

RESUMO

The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.


Assuntos
Neurônios Colinérgicos/metabolismo , Dopamina/metabolismo , Interneurônios/fisiologia , Aprendizagem/fisiologia , Estresse Fisiológico , Potenciais de Ação , Animais , Corpo Estriado/citologia , Corpo Estriado/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Destreza Motora , Plasticidade Neuronal , Técnicas de Patch-Clamp , Biossíntese de Proteínas , Receptores de Dopamina D2/metabolismo
6.
Neuron ; 92(6): 1238-1251, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-27939583

RESUMO

Dystonia is a brain disorder causing involuntary, often painful movements. Apart from a role for dopamine deficiency in some forms, the cellular mechanisms underlying most dystonias are currently unknown. Here, we discover a role for deficient eIF2α signaling in DYT1 dystonia, a rare inherited generalized form, through a genome-wide RNAi screen. Subsequent experiments including patient-derived cells and a mouse model support both a pathogenic role and therapeutic potential for eIF2α pathway perturbations. We further find genetic and functional evidence supporting similar pathway impairment in patients with sporadic cervical dystonia, due to rare coding variation in the eIF2α effector ATF4. Considering also that another dystonia, DYT16, involves a gene upstream of the eIF2α pathway, these results mechanistically link multiple forms of dystonia and put forth a new overall cellular mechanism for dystonia pathogenesis, impairment of eIF2α signaling, a pathway known for its roles in cellular stress responses and synaptic plasticity.


Assuntos
Distonia/genética , Distúrbios Distônicos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator 4 Ativador da Transcrição/genética , Animais , Modelos Animais de Doenças , Distonia/metabolismo , Distonia Muscular Deformante/genética , Distúrbios Distônicos/metabolismo , Genômica , Células HEK293 , Humanos , Camundongos , Chaperonas Moleculares/genética , Plasticidade Neuronal , Transdução de Sinais , Torcicolo/genética
7.
Neurobiol Dis ; 93: 137-45, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27168150

RESUMO

Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.


Assuntos
Distúrbios Distônicos/genética , Chaperonas Moleculares/genética , Mutação/genética , Plasticidade Neuronal/genética , Animais , Modelos Animais de Doenças , Distonia/genética , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...